МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Моделирование систем, подверженных случайным воздействиям

Образовательная программа бакалавриата

01.03.02-Прикладная математика и информатика

Направленность (профиль) программы Математическое моделирование и вычислительная математика

> Форма обучения *Очная*

Статус дисциплины: входит в факультативный часть ОПОП

Махачкала, 2022

Рабочая программа дисциплины "Моделирование систем, подверженных случайным воздействиям" составлена в 2022 году в соответствии с требованиями ФГОС ВО бакалавриат по направлению подготовки 01.03.02 -Прикладная математика и информатика 10 января 2018 г. № 9.

Разработчик: кафедра прикладной математики, Кадиев Р.И. д.ф.-м.н. профессор

Рабочая программа дист на заседании кафедры	циплины одобрен прикладной матем	а: матики от «25»февра	ля 2022 г.,
протокол № 6 Зав. кафедрой	Кадиев		
на заседании Методиче наук от «24» марта 202	ской комиссии ф 22 г., протокол №	акультета математика 4.	и и компьютерных
Председатель	Ризаев	M.K.	
Рабочая программа дис «31» марта 2022 г.	циплины согласо	вана с учебно-методич	ческим управлением
/Начальник УМУ	The	Гасангаджиева А.	Γ.
	(подпись)		

Аннотация рабочей программы дисциплины

Дисциплина "Моделирование систем, подверженных случайным воздействиям» входит в факультативный часть образовательной программы бакалавриата по направлению подготовки 01.03.02 - Прикладная математика и информатика.

Дисциплина реализуется на факультете математики и компьютерных наук кафедрой прикладной математики.

Содержание дисциплины охватывает круг вопросов, связанных с современной теорией моделирования систем, подверженных случайным воздействиям, усвоением основных элементов теории стохастических уравнений, а также знакомством с современными проблемами теории моделирование систем, подверженных случайным воздействиям.

Дисциплина нацелена на формирование следующих компетенций выпускника:

универсиональных - УК-1;

общепрофессиональных – ОПК-2.

Преподавание дисциплины предусматривает проведение следующих видов учебных занятий: лекции, самостоятельная работа.

Рабочая программа дисциплины предусматривает проведение следующих видов контроля успеваемости в форме коллоквиума.

Объем дисциплины 1 зачетная единица, в том числе в академических часах по видам учебных занятий

Семе				Форма				
стр				промежуточн				
	Всег	К	CPC,	ой аттестации				
	0		пре	В	(зачет,			
				ТОМ	дифференцир			
		Лек	Лаборат	Практи	КСР	консул	числ	ованный
		ции	орные	ческие		ьтации	e	зачет, экзамен
			занятия	экза				
				мен				
6	36	32					4	зачет

1. Цели освоения дисциплины

Целями освоения дисциплины "Моделирование систем, подверженных случайным воздействиям" являются: знакомство с теорией математическое моделирование различных процессов приложением стохастических И дифференциальных уравнений, как обобщение обыкновенных дифференциальных моделировать процессы. подверженных уравнений, умение простейшие дифференциальные воздействиям решать стохастические И уравнения, изучение различных методов исследования качественных свойств решений стохастических дифференциальных уравнений, установление связи с

другими математическими дисциплинами; привить обучающимся умение самостоятельно изучать учебную и научную литературу по математике

2. Место дисциплины в структуре ОПОП бакалавриата.

"Моделирование Дисциплина случайным систем, подверженных воздействиям" входит в факультативную часть программы бакалавриата по направлению подготовки 01.03.02 - Прикладная математика и информатика. Знания по теории случайных процессов необходимы для данной специальности, как для освоения различных смежных дисциплин, так и крайне нужны для создания математических моделей процессов, подверженных воздействия, для последующего их решения, выбора из полученных решений тех решений, которые имеют прикладной смысл.

Изучение стохастических дифференциальных уравнений предполагает хорошее знание *теории вероятностей*, математической статистики, элементов функционального анализа, линейной алгебры, интеграла Стилтьеса, теории меры и теории случайных процессов.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (перечень планируемых результатов обучения и процедура освоения).

Код и	Код и	Планируемые результаты	Процедура
наименование	наименование	обучения	освоения
компетенции	индикатора		0020011111
из ОПОП	достижения		
13 011 011	компетенций (в		
	соответствии с		
	ОПОП)		
УК-1.	УК-1.1.	Знает: структуру задач в	Контрольные
Способен	Знает принципы	различные области.	работы,
осуществлять	сбора,	Умеет: анализировать	лабораторны
поиск,	обработки и	постановку данной	е работы,
критический	обобщения	математической задачи.	экзамен
анализ и синтез	информации.	Владеет: навыками сбора,	
информации.		отбора и обобщения	
применять		научной информации в	
системный		различных областях	
подход для		математики.	
решения	УК-1.2.	Знает: принципы	
поставленных	Умеет	математического	
задач.	соотносить	моделирования	
	разнородные	разнородных явлений,	
	явления и	Умеет: системно подходить	
	систематизиров	к решению задач на	
	ать их в рамках	разнородные явления в	
	избранных	области математики и	

	видов	компьютерных наук.	
	профессиональн	Владеет: навыками	
	ой	систематизации	
	деятельности.	разнородных явлений.	
	УК-1.3.	Знает: современные методы	
	Имеет	сбора и анализа научного	
	практический	материала.	
	опыт работы с	Умеет: применять	
	информационн	современные методы и	
	ЫМИ	средства анализа и	
	источниками,	систематизации научных	
	опыт научного	данных.	
	поиска создания	Владеет: навыками	
	научных	и пользования	
	текстов.	информационных	
		технологий.	
ОПК-2.	ОПК-2.1.	Знает: достаточно обширно	Контрольные
Способен	Владеет	методы решения	работы,
использовать и	навыками	прикладных задач с	лабораторны
адаптировать	использования	использованием	е работы,
существующие	математическог	математического аппарата и	экзамен
математические	о аппарата и	системы программирования.	
методы и	системы	Умеет: определять цель и	
системы	программирова	задачи, методы решения	
программирова	ния для	прикладных задач.	
н ия для	решения	Владеет: методикой и	
разработки	прикладных	навыками использования	
реализации	задач.	математического аппарата и	
алгоритмов		системы	
решения	ОПК-2.2.	Знает: основные методы	
прикладных	Умеет решать	метолы решения	
задач	различные	прикладных задач.	
	прикладные	Умеет: использовать	
	задачи,	методы математического	
	используя	аппарата и системы	
	существующие	программирования. при	
	математические	решения различных задач	
	методы и	прикладного характера.	
	системы	Владеет: навыками	
	программирова	решения конкретных задач	
	ния.	прикладного характера в	
		соответствии с выбранной	
		методикой.	

ОПК-2.3.	Знает: различные методы
Имеет	решения прикладных задач
практический	і с использованием
ОПЫТ	математического аппарата и
исследований	системы программирования.
прикладных	Умеет: анализировать
задач.	современные научные
	достижения в области
	исследований прикладных
	задач.
	Владеет: навыками
	самостоятельной научно-
	исследовательской работы в
	области теории вероятностей и
	математической статистики,
	исследования операций, методов
	оптимизации, численных
	методов.

4. Объем, структура и содержание дисциплины. 4.1. Объем дисциплины составляет 1 зачетная единица, 36 академических часов.

4.2. Структура дисциплины.

№	Раздел дисциплины			Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)						Формы текущего контроля успеваемос	
		Семестр	Неделя семестра	Лекции	Практические занятия	Лаб. Раб.	Сам. раб	Подг. к экз.	Общ. Тр.	ти (по неделям семестра) Форма промежуто чной аттестации (по семестрам)	
Mo	одуль 1.			32			4		36		
1	Основные понятия теории вероятностей.	6	1, 2	4					4	Индивидуал ьный фронтальный й опрос,	
2	Основные понятия теории случайных	6	3-5	4					4	тестировани е,	

	процессов.							лабораторна я работа,
3	Интеграл Ито, формула Ито	6	6-8	6		2	8	проверка групп
4	Модели финансовых процессов.	6	9-11	6		2	8	журнала
5	Модели ГСБ-1. Броуновское движение	6	12- 14	6			6	
6	Дифференциаль ные уравнения Ито.	6	15- 17	6			6	
	итого:			32		4	36	

4.3. Содержание дисциплины, структурированное по темам

4.3.1.Содержание лекционных занятий по дисциплине

Модуль 1.

Тема 1. Основные понятия теории вероятностей.

Вероятностное пространство. Независимость событий. Схема Бернулли. Случайные величины и их числовые и функциональные характеристики. Основные виды распределений. Многомерные случайные величины.

Тема 2. Основные понятия теории случайны процессов.

Определение случайного процесса. Характеристики случайных процессов. Траектории и реализация случайных процессов. Марковские случайные процессы. Винеровский процесс.

Тема 3. Интеграл Ито.

Понятие интегралов Римана, Лебега и Стилтьеса. Построение интеграла Ито. некоторые свойства интеграла Ито.

Тема 4. Формула Ито.

Формула Ито для одномерного случая, Многомерная формула Ито. Вычисление некоторых интегралов Ито, используя формулу Ито.

Тема 5. Модели финансовых процессов.

Объект исследования финансовой эконометрики. Временные ряды финансовых процесс. Гипотезы финансовой эконометрики.

Тема 6. Модели ГСБ-1. Броуновское движение.

Модели ГСБ-1. Броуновское движение. модели временных рядов финансовых показателей.

Тема 7. Дифференциальные уравнения Ито.

5. Образовательные технологии.

Лекции проводятся с использованием аудитории, оснащенной мультимедиапроектором, экраном, доской, ноутбуком (с программным обеспечение для демонстрации слайд-презентаций), а также меловой доски и мела. Семинарские занятия проводятся с использованием мела и меловой доски. Параллельно материал транслируется на экран с помощью мультимедийного проектора. Для проведения семинарских занятий необходима аудитория на 25 человек, оснащённая доской.

6. Учебно-методическое обеспечение самостоятельной работы студентов.

			J / 1			
$N_{\underline{0}}$	Виды самостоятельной	Вид контроля	Учебно-методич.			
	работы		обеспечения			
1	Изучение рекомендованной	Устный опрос по	См. разделы 8, 9			
	литературы	разделам дисциплины	данного документа			
2	Решение задач	Проверка домашнего	См. разделы 8, 9			
		задания	данного документа			
3	Выполнение домашних	Зачет по выполненному	См. разделы, 8, 9			
	самостоятельных заданий.	заданию	данного документа			
4	Подготовка к коллоквиуму	Промежуточная	См. разделы, 8, 9			
		аттестация в форме	данного документа			
		ответов на заранее				
		объявленные вопросы				

Задания для проверочной работы, самостоятельной работы, домашние задания содержатся в пособиях, указанных в списке учебной литературы [1]-[8].

7. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины. 7.1. Типовые контрольные задания.

Контрольная работа 1

- 1. Случайный процесс x(t) задается уравнением $x(t) = t^2 + \xi(\omega), t \ge 0$, где $\xi(\omega)$ случайная величина равномерно распределенная на отрезке [–2,2]. Описать множество траекторий и сечений случайного процесса x(t).
- 2. Найти характеристики случайного процесса $x(t) = \xi(\omega) \sin t + \cos t, t \ge 0$, где $\xi(\omega)$ случайная величина с характеристиками $M(\xi) = 3$, $D(\xi) = 0,2$.

Контрольная работа 2

1. Вычислить Интегралы Ито
$$\int_{0}^{t} W(s)dW(s)$$
, $\int_{0}^{t} (W(s) + W(s)^{3})dW(s)$.

- 2. Решить дифференциальное уравнение Ито
 - a) $dx(t) = tx(t)dt + 4dW(t), t \ge 0$,
 - $6) dx(t) = tx(t)dt + 4x(t)dW(t), t \ge 0,$

B) $dx(t) = tx(t)dt + 4x(t)dW(t) + tdt, t \ge 0$.

Контрольные вопросы

Тема 1.

- 1. Дать определение вероятностного пространства.
- 2. Дать определение случайной величины и их числовых и функциональных характеристик.

Тема 2.

- 1. Дать определение случайного процесса и характеристик случайных процессов.
- 2. Дать определение Марковского случайные процессы.
- 3. Дать определение Винеровского процесса.

Тема 3

- 1. Дать определение интегралов Римана, Лебега и Стилтьеса.
- 2. Как стоится интеграл Ито.
- 3. Указать свойства интеграла Ито.

Тема 4.

- 1. Формула Ито для одномерного случая.
- 2. Вычисление некоторых интегралов Ито, используя формулу Ито.

Тема 5.

- 1. Что является объектом исследования финансовой эконометрики.
- 2. Временные ряды финансовых процесс.
- 3. Гипотезы финансовой эконометрики.

Тема 6.

- 1. Модели ГСБ-1.
- 2. Броуновское движение.
- 3. Модели временных рядов финансовых показателей.

Тема 7.

- 1. Определение дифференциального уравнения Ито.
- 2. Существование и единственность решения для дифференциального уравнения Ито.

Тема 8.

- 1. Определение линейного дифференциального уравнения Ито.
- 2. Формула Коши для решений линейных дифференциальных уравнений Ито.

7.2. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

1. Общий результат выводится как интегральная оценка, складывающая из текущего контроля – 30 % и промежуточного контроля – 70 %.

Текущий контроль по дисциплине включает:

- посещение занятий 10 баллов,
- участие на практических занятиях 10 баллов,
- выполнение домашних (аудиторных) контрольных работ 10 баллов.
- 2. Промежуточный контроль по дисциплине включает:

- собеседование 30 баллов,
- письменная контрольная работа 40 баллов.

8. Учебно-методическое обеспечение дисциплины.

а) основная литература:

- 1. Шихеева В.В. Теория случайных процессов [Электронный ресурс] :марковские цепи. Учебное пособие / В.В. Шихеева. Электрон. текстовые данные. М.: Издательский Дом МИСиС, 2013. 70 с. 978-5-87623-736-1. Режим доступа: http://www.iprbookshop.ru/56202.html
- 2. Вентцель Е.С. Теория случайных процессов и ее инженерные приложения. М: Изд-во КНОРУС, 2014, 448 с.
- 3. Свешников А.А. Прикладные методы теории случайных функций. М: Лань, 2011, 463 с.
- 4. Оксендаль Б. Стохастические дифференциальные уравнения (введение в теорию и приложения). М; Мир, 2003 406 с.
- 5. Розов А.К. Стохастические дифференциальные уравнения и их применение [Электронный ресурс] / А.К. Розов. Электрон. текстовые данные. СПб.: Политехника, 2016. 306 с. 978-5-7325-1092-8. Режим доступа: http://www.iprbookshop.ru/59722.html
- 6. Ватанабэ С., Икэда Н. Стохастические дифференциальные. Москва: Наука, 1981 445 с.
- 7. Гихман И.И., Скороход А.В. Стохастические дифференциальные уравнения и их приложения. Киев: Наукова думка, 1982 611 с.
- 8. Тихомиров Н.П., Дорохина Е.Ю. Эконометрика Москва: Экзамкень 2003 510 с.

б) дополнительная литература

- 1. Семаков С.А. Элементы теории вероятностей и случайных процессов. М: Физматлит, 2011, 232 с.
- 2. Хрущева И.В., Щербаков В.И., Леванова Д.С. Основы математической статистики и теории случайных процессов. М: Из-во Лань, 2009, 320 с.
- 3. Волков И.К., Зуев С.М., Цветкова Г.М. Случайные процессы. М: Изд-во МГТУ, 2003, 360 с.
- 4. Сборник задач по теории вероятностей, математической статистике и теории случайных функций. Учебное пособие под ред. А.А. Свешникова. М: Лань, 2008 448 с.

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. Федеральный портал российское образование http://edu.ru;
- 2. Электронные каталоги Научной библиотеки Даггосуниверситета http://elib.dgu.ru/?q=node/256;
- 3. Образовательные ресурсы сети Интернет http://catalog.iot.ru/index.php;
- 4. Электронная библиотека http://elib.kuzstu.ru.

- 5. Тарасов В.Н., Бахарева Н.Ф. «Численные методы. Теория. Алгоритмы. Программы». Учебное пособие. Самара, 2008. http://pouts.psuti.ru/wp-content/uploads/Числ.методы.pdf
- 6. . http://www.twirpx.com/files/informatics/os/lectures.
- 7. zyurvas.narod.ru/bibteorstp.roc.

10. Методические указания для обучающихся по освоению дисциплины.

Для успешного освоения курса студентам рекомендуется проводить самостоятельный разбор материалов семинарских занятий в течении семестра. В случае затруднений в понимании и освоении каких-либо тем решать дополнительные задания из учебных пособий, рекомендуемых к данному курсу.

Рекомендуется самостоятельно повторять материал, пройденный во время лекций с подробным разбором доказательств теорем.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем.

Для успешного освоения дисциплины, обучающийся использует следующие программные средства: пакеты для решения задач математического программирования: Mathcad, Delphi, Matlab.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Учебные аудитории для проведения лекционных и семинарских занятий.